add
Suppose \(a\) and \(b\) are real numbers, not both 0. Find real numbers \(c\) and
\(d\) such that
\[1/(a+bi) = c+di \]
We can multiple both sides by \(a-bi\).
\[ \frac{1}{a+bi} \cdot \frac{a-bi}{a-bi} = \frac{a-bi}{a^2+b^2}\]
Equating real and imaginary parts, we get
\[ c = \frac{a}{a^2+b^2} \text{ and } d = \frac{-b}{a^2+b^2} \]
add
Show that
\[ \frac{-1 + \sqrt{3}i}{2} \]
is a cube root of 1 (meaning that its cube equals 1).
Suppose \(a, b \in \mathbb{R} \) such that \( (a+bi)^2 = i \). Then,
\[ (a+bi)^2 = a^2 +2abi -b^2 = i\]
Equating real and imaginary parts, we get
\[ a^2 - b^2 = 0 \tag{1} \]
\[ 2ab = 1 \tag{2} \]
Equation (1) implies \(a = b \) (\(a = -b \) is impossible). Plugging \(a=b\) into (2) we get \( b = \pm
\frac{\sqrt{2}}{2}\). Hence, our two roots are
\[ \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i \text{ and } \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i\]
add
Show that \(\alpha + \beta = \beta + \alpha \) for all \(\alpha, \beta \in \mathbb{C}\).
Let \(\alpha, \beta \in \mathbb{C} \). We can write
\[\alpha = a+ bi \text{ and } \beta = c + di \]
for \( a,b,c,d \in \mathbb{R}. \)
\begin{align*}
\alpha + \beta &= (a+bi) + (c+di) \\
& = (a+c) + (b+d)i \\
& = (c+a) + (d+b)i \\
& = (c+di) + (a+bi) \\
& = \beta + \alpha
\end{align*}
add
Show that \( (\alpha + \beta) + \gamma = \alpha + (\beta + \gamma) \) for all \( \alpha, \beta, \gamma
\in \mathbb{C}. \)
We can write
\[\alpha = a+ bi \]
\[ \beta = c+di\]
\[ \gamma = e + fi \]
for \( a,b,c,d,e,f \in \mathbb{R}. \)
\begin{align*}
(\alpha + \beta) + \gamma &= \Big[ (a+bi) + (c+di)\Big] + (e + fi) \\
& = (a+c) + (b+d)i + (e+fi) \\
& = a + c + bi + di + e + fi \\
& = a+bi + c + e + di + fi \\
& = (a+bi) + (c+e) + (d+f)i \\
& = (a+bi) + \Big[(c+di) + (e+fi)\Big] \\
& = \alpha + (\beta + \gamma)
\end{align*}
add
Show that \( (\alpha \beta)\gamma = \alpha(\beta \gamma) \) for all \( \alpha, \beta, \gamma \in
\mathbb{C} \)